66 research outputs found

    Passport: Enabling Accurate Country-Level Router Geolocation using Inaccurate Sources

    Full text link
    When does Internet traffic cross international borders? This question has major geopolitical, legal and social implications and is surprisingly difficult to answer. A critical stumbling block is a dearth of tools that accurately map routers traversed by Internet traffic to the countries in which they are located. This paper presents Passport: a new approach for efficient, accurate country-level router geolocation and a system that implements it. Passport provides location predictions with limited active measurements, using machine learning to combine information from IP geolocation databases, router hostnames, whois records, and ping measurements. We show that Passport substantially outperforms existing techniques, and identify cases where paths traverse countries with implications for security, privacy, and performance

    Passport: enabling accurate country-level router geolocation using inaccurate sources

    Full text link
    When does Internet traffic cross international borders? This question has major geopolitical, legal and social implications and is surprisingly difficult to answer. A critical stumbling block is a dearth of tools that accurately map routers traversed by Internet traffic to the countries in which they are located. This paper presents Passport: a new approach for efficient, accurate country-level router geolocation and a system that implements it. Passport provides location predictions with limited active measurements, using machine learning to combine information from IP geolocation databases, router hostnames, whois records, and ping measurements. We show that Passport substantially outperforms existing techniques, and identify cases where paths traverse countries with implications for security, privacy, and performance.First author draf

    Protected or Porous: A Comparative Analysis of Threat Detection Capability of IoT Safeguards

    Get PDF
    Consumer Internet of Things (IoT) devices are increasingly common, from smart speakers to security cameras, in homes. Along with their benefits come potential privacy and security threats. To limit these threats a number of commercial services have become available (IoT safeguards). The safeguards claim to provide protection against IoT privacy risks and security threats. However, the effectiveness and the associated privacy risks of these safeguards remains a key open question. In this paper, we investigate the threat detection capabilities of IoT safeguards for the first time. We develop and release an approach for automated safeguards experimentation to reveal their response to common security threats and privacy risks. We perform thousands of automated experiments using popular commercial IoT safeguards when deployed in a large IoT testbed. Our results indicate not only that these devices may be ineffective in preventing risks, but also their cloud interactions and data collection operations may introduce privacy risks for the households that adopt them

    Understanding the Role of Registrars in DNSSEC Deployment

    Get PDF
    The Domain Name System (DNS) provides a scalable, flexible name resolution service. Unfortunately, its unauthenticated architecture has become the basis for many security attacks. To address this, DNS Security Extensions (DNSSEC) were introduced in 1997. DNSSECā€™s deployment requires support from the top-level domain (TLD) registries and registrars, as well as participation by the organization that serves as the DNS operator. Unfortunately, DNSSEC has seen poor deployment thus far: despite being proposed nearly two decades ago, only 1% of .com, .net, and .org domains are properly signed. In this paper, we investigate the underlying reasons why DNSSEC adoption has been remarkably slow. We focus on registrars, as most TLD registries already support DNSSEC and registrars often serve as DNS operators for their customers. Our study uses large-scale, longitudinal DNS measurements to study DNSSEC adoption, coupled with experiences collected by trying to deploy DNSSEC on domains we purchased from leading domain name registrars and resellers. Overall, we find that a select few registrars are responsible for the (small) DNSSEC deployment today, and that many leading registrars do not support DNSSEC at all, or require customers to take cumbersome steps to deploy DNSSEC. Further frustrating deployment, many of the mechanisms for conveying DNSSEC information to registrars are error-prone or present security vulnerabilities. Finally, we find that using DNSSEC with third-party DNS operators such as Cloudflare requires the domain owner to take a number of steps that 40% of domain owners do not complete. Having identified several operational challenges for full DNSSEC deployment, we make recommendations to improve adoption

    An Empirical Study of the I2P Anonymity Network and its Censorship Resistance

    Full text link
    Tor and I2P are well-known anonymity networks used by many individuals to protect their online privacy and anonymity. Tor's centralized directory services facilitate the understanding of the Tor network, as well as the measurement and visualization of its structure through the Tor Metrics project. In contrast, I2P does not rely on centralized directory servers, and thus obtaining a complete view of the network is challenging. In this work, we conduct an empirical study of the I2P network, in which we measure properties including population, churn rate, router type, and the geographic distribution of I2P peers. We find that there are currently around 32K active I2P peers in the network on a daily basis. Of these peers, 14K are located behind NAT or firewalls. Using the collected network data, we examine the blocking resistance of I2P against a censor that wants to prevent access to I2P using address-based blocking techniques. Despite the decentralized characteristics of I2P, we discover that a censor can block more than 95% of peer IP addresses known by a stable I2P client by operating only 10 routers in the network. This amounts to severe network impairment: a blocking rate of more than 70% is enough to cause significant latency in web browsing activities, while blocking more than 90% of peer IP addresses can make the network unusable. Finally, we discuss the security consequences of the network being blocked, and directions for potential approaches to make I2P more resistant to blocking.Comment: 14 pages, To appear in the 2018 Internet Measurement Conference (IMC'18
    • ā€¦
    corecore